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We investigate the Hubbard chain at half band filling with additional nearest-neighbor and next-nearest-
neighbor spin exchange J1 and J2 using bosonization and the density-matrix renormalization group. For
J2=0 we find a spin-density-wave phase for all positive values of the Hubbard interaction U and the Heisen-
berg exchange J1. A frustrating spin exchange J2 induces a bond-order-wave phase. For some values of J1, J2,
and U, we observe a spin-gapped metallic Luther-Emery phase.
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I. INTRODUCTION

The Hubbard chain is the archetype of one-dimensional
strongly correlated electron systems. At half band filling and
for all values of the Hubbard interaction U, it exhibits insu-
lating spin-density-wave �SDW� behavior, marked by a criti-
cal behavior of the spin correlations. In a weak-coupling pic-
ture, this insulating behavior is generated by umklapp
scattering, while in strong coupling, the opening of the Mott-
Hubbard gap leads to behavior of the spin degrees of free-
dom governed by an effective Heisenberg chain. These per-
turbative results are reinforced by the exact Bethe-Ansatz
solution.1 Hubbard-type models are relevant to a wide vari-
ety of quasi-one-dimensional materials such as polymers,2

strontium cuprates,3 or the charge transfer salt TTF-TCNQ.4

One important experimental question is to what extent the
spin correlations remain critical when additional interactions
are present. It is well known that any dimerization or suffi-
ciently large frustration can lead to a spin gap in the
Heisenberg-type spin models. A nearest-neighbor Coulomb
repulsion,5,6 an alternating local potential,7,8 or a second-
neighbor hopping9,10 can lead to a spin gap in models for
itinerant interacting electrons.

The Hubbard model with a nearest-neighbor antiferro-
magnetic exchange in two dimensions is of interest in the
context of the high-Tc cuprates. In particular, spin-liquid
states11 and gossamer superconductivity12 at and near half
filling have been proposed as necessary precursors to high-
temperature superconductivity at higher doping. Since it is
not clear whether such states are present in sufficient strength
and for sufficiently wide parameter regimes in the pure Hub-
bard or t-J models, additional interactions, including a spin
exchange, have been proposed to be relevant.13

In this work, we investigate the effect of two additional
terms on the phase diagram of the Hubbard chain at half-
band filling �average electron occupation �n�=1�, namely,
explicit antiferromagnetic exchange interactions between
nearest neighbors and between next-nearest neighbors.

The Hamiltonian is given by

H = − t�
i,�

�ci,�
† ci,� + H.c.� + U�

i

ni,↑ni,↓

+ J1�
i

SiSi+1 + J2�
i

SiSi+2, �1�

where ci,�
† �ci,�� creates �annihilates� an electron with spin �

at site i, ni,�=ci,�
† ci,�, and Si is the spin operator on site

i :Si
�= 1

2��,��ci,�
† �̂�,��

� ci,��. The indices �=x, y, z, and �̂�,��
�

are the Pauli matrices. Here t is the hopping amplitude and U
the strength of the on-site Coulomb interaction. The antifer-
romagnetic Heisenberg parameters J1 and J2 correspond to
nearest- and next-nearest-neighbor exchange, respectively.
Note that additional weak hopping amplitudes t2 , t3� t to
next-nearest and next-next-nearest neighbors do not change
the physics qualitatively; see Sec. II A.

The unfrustrated �J2=0� version of this model has previ-
ously been investigated both analytically and numerically. In
particular, a generalized model with an anisotropic Heisen-
berg coupling was investigated in Ref. 14 using bosoniza-
tion. While this work concentrated primarily on the case of
ferromagnetic exchange, isotropic antiferromagnetic ex-
change was included in a phase that is marked as “dimer
long-range order,” which corresponds to a bond-order wave
�BOW� in our notation; see below. The phase diagram from
bosonization of the isotropic antiferromagnetic exchange
was considered explicitly in Refs. 15 and 16, supported by
numerical calculations using the transfer-matrix renormaliza-
tion group15 �TMRG� and exact diagonalization.16 The phase
diagram found contains two phases: a bond charge-density-
wave phase �our BOW phase� at sufficiently small U for all
J1 and a SDW at larger U. The critical value of Uc goes to
zero at small and large J1 and reaches a maximum value
Uc / t�0.35 at intermediate J1. Our model also covers limit-
ing cases of more elaborate models, e.g., for superconductiv-
ity in one-dimensional materials.17

In this work, we re-examine the bosonization treatment of
the t-U-J1 model in the weak-coupling regime, including the
renormalization of the coupling constants within the mean-
field approximation. In addition, we consider the effect of the
additional frustrating exchange J2, which allows us to explic-
itly induce the bond-order phase and to make contact with
the known phase diagram of the frustrated Heisenberg chain
at large U. We also carry out high-precision ground-state
density-matrix renormalization group �DMRG� calculations,
which allow us to explore the phase diagram numerically
exactly. Both the revised bosonization and the DMRG calcu-
lations indicate that a BOW phase is not present for J2=0;
the system is in a SDW phase for all positive J1 and U. We
show that a BOW phase can be induced by turning on J2
positively, with the critical value required depending on U
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and J1. At larger values of J2, we find additional phases
including a spin-gapped metallic phase which we identify as
a Luther-Emery phase.

The paper is organized as follows: In Sec. II, we discuss
the bosonization calculation and the resulting phase diagram.
Section III contains our numerical DMRG results and com-
pares and contrasts the behavior obtained with that predicted
by bosonization. In Sec. IV, we discuss the overall phase
diagram of the model in terms of the results from the two
methods as well as the implications of our findings.

II. FIELD THEORY

We start our investigation with an analytical treatment of
our model for small couplings U ,J1 ,J2� t. For simplicity,
we take ��1 everywhere.

A. Linearization of the spectrum

In terms of fermion operators the Hamiltonian �1� has the
form

H = − t�
i,�

�ci,�
† ci,� + H.c.� + U�

i

ci,↑
† ci,↑ci,↓

† ci,↓

+ �
�=1

2
J�

4 �
i

�2�ci,↓
† ci,↑ci+�,↑

† ci+�,↓ + ci,↑
† ci,↓ci+�,↓

† ci+�,↑�

+ ci,↑
† ci,↑ci+�,↑

† ci+�,↑ + ci,↓
† ci,↓ci+�,↓

† ci+�,↓ − ci,↑
† ci,↑ci+�,↓

† ci+�,↓

− ci,↓
† ci,↓ci+�,↑

† ci+�,↑	 . �2�

For low temperatures and for excitations at low energies, it is
enough to consider a restricted Hilbert space which contains
only states close to the Fermi surface. In one dimension, the
Fermi surface consists only of two points k= �kF. In the
weak-coupling limit, additional hopping terms to next-
nearest and next-next-nearest neighbors modify the Fermi
velocity but do not change the physics qualitatively as long
as there are only two Fermi points. Therefore, we have not
considered these terms explicitly in Hamiltonian �1�.

Around the Fermi points, the spectrum can be linearized
and one can introduce left-moving and right-moving fermi-
ons corresponding to the states near −kF and +kF, respec-
tively,

ci+�,� → ci+�,�,+eikF�Ri+�a� + ci+�,�,−e−ikF�Ri+�a�, �3�

for �=0,1 ,2. Here Ri is the coordinate vector of the site i
and a is the lattice constant. For the half-filled system, kF
=� /2a. Therefore, the left- and right-moving fermions have
the phase factor e�i��/2 for different values of �. When writ-
ten in terms of the chiral fermions ci+�,�,�, each interaction
term of Hamiltonian �2� splits into four new terms. Two of
them correspond to forward-scattering processes whose cou-
plings are denoted by g2 and g4 in standard g-ology
notation.18 In addition, there are two backward-scattering
processes which describe “true” backward scattering �g1 pro-
cesses� and umklapp scattering �g3 processes�. Due to the
SU�2� symmetry of the spin sector, all processes depend only
on the relative spins of the scattering electrons. This is de-
noted by the subscripts 
 and � if the scattering electrons

have the same or opposite spins, respectively. The relations
between the g-ology parameters and the couplings of our
original model are

g1� = U − J1/2 – 3J2/2, �4a�

g2� = U + J1/2 – 3J2/2, �4b�

g3� = U + 3J1/2 – 3J2/2, �4c�

g4� = U − 3J1/2 – 3J2/2, �4d�

and

g1
 = − J1/2 + J2/2, �5a�

g2
 = J1/2 + J2/2, �5b�

g3
 = − J1/2 + J2/2, �5c�

g4
 = J1/2 + J2/2. �5d�

In order to analyze the low-energy g-ology model, we apply
the bosonization method.

B. Bosonization of the Hamiltonian

First, we introduce the continuous chiral fermion fields
��,��x� by making the replacement ci,�,� /�a→��,��x�. The
bosonization of the on-site interaction is straightforward. Us-
ing Abelian bosonization, we introduce the chiral boson
phase fields 	�,��x� via

��,��x� =
1

�2�
F�e�i2	�,��x�, �6�

where F� are the so-called Klein factors which ensure the
anticommutation relations of the fermion fields. The sym-
metric and antisymmetric combinations of the spin-
dependent boson fields 	c,�=	↑,�+	↓,� and 	s,�=	↑,�
−	↓,� correspond to the collective charge and spin modes,
respectively.

In order to bosonize the nonlocal processes, one must
expand the fermion fields with respect to the lattice constant.
The bosonized form of the g-ology Hamiltonian density, up
to leading order in the expansion with respect to the lattice
constant, is

H�0��x� =
1

2�
�
r=�

�v
��x	c,r�2 + v���x	s,r�2	 +
g


2�2 ��x	c,+�

���x	c,−� −
gc

2�2cos�2	c� −
g�

2�2 ��x	s,+���x	s,−�

+
gs

2�2cos�2	s� −
gcs

2�2cos�2	c�cos�2	s� . �7�

Here 	c/s=	c/s,++	c/s,− are the total phase fields, and the
couplings are given by

g
 = g2� + g2
 − g1
 = U + 3J1/2 – 3J2/2, �8a�
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g� = g2� − g2
 + g1
 = U − J1/2 – 3J2/2, �8b�

gc = g3� = U + 3J1/2 – 3J2/2, �8c�

gs = g1� = U − J1/2 – 3J2/2, �8d�

gcs = g3
 = − J1/2 + J2/2. �8e�

The renormalized Fermi velocities are v
=2t+ �g4


+g4�� /2� and v�=2t+ �g4
 −g4�� /2�. Here and in the fol-
lowing, we use the lattice constant as the unit for the cou-
pling constants as well as for the Fermi velocities.

The spin-charge coupling term with coupling constant gcs
describes umklapp scattering processes between electrons
with the same spin. This interaction term formally occurs in
the lowest order of the expansion of the fermion fields with
respect to the lattice constant. It is clear, however, that g3


type processes can give contributions only for nonlocal in-
teractions. Moreover, this spin-charge coupling term breaks
the global spin SU�2� symmetry of the system. Therefore, in
order to preserve this symmetry, and in order to treat the
nonlocal interactions in a consistent way, the next-to-leading
terms have to be taken into account in the expansion of the
fermion fields. To first order, among other contributions,
three new spin-charge coupling terms appear in the Hamil-
tonian. We find that the spin and charge velocities are
changed by the term �−g1
 /2�, and the symmetry-restoring
nonlocal interaction terms are given by

H�1��x� =
gc�

2�2 ��x	s,+���x	s,−�cos�2	c�

−
g
s

2�2 ��x	c,+���x	c,−�cos�2	s�

+
g
�

2�2 ��x	c,+���x	c,−���x	s,+���x	s,−� . �9�

The first two terms correspond to backward and umklapp
scattering, respectively, between electrons with opposite
spins, and the third term describes backward-scattering pro-
cesses between electrons with equal spins. Initially, all these
couplings are equal to gcs,

g
s = gc� = g
� = gcs = − J1/2 + J2/2. �10�

The SU�2� symmetry of the spin sector assures gs=g�, gcs
=gc�, and g
s=g
�. Therefore, there are five independent
couplings which we choose to be g
, gc, gs, gcs, and g
s. We
note that the renormalization of the Fermi velocities, which
is a secondary effect, will not be taken into account in the
following.

C. Renormalization-group analysis for fluctuating charge and
spin fields

The Hamiltonian H=H�0�+H�1� cannot be solved exactly.
However, a renormalization-group �RG� analysis permits the
investigation of the relative importance of the various cou-
plings. In the RG procedure, the couplings are considered to
be a function of some scaling parameter y, e.g., the logarithm

of the effective bandwidth. As the scaling parameter is taken
to infinity, the flow of the couplings shows which of them are
important and which can be ignored, depending on whether
or not they tend to zero, to a finite value, or to infinity. For
example, when all couplings but the forward-scattering terms
tend to zero, the Hamiltonian H describes a Luttinger liquid
with freely propagating charge and spin degrees of freedom.

The one-loop RG equations for our five dimensionless
running coupling constants g̃x�y��gx�y� /4�t read15,19

dg̃
�y�
dy

= 2g̃c
2 + g̃cs

2 + g̃sg̃
s, �11a�

dg̃c�y�
dy

= 2g̃
g̃c − g̃sg̃cs − g̃csg̃
s, �11b�

dg̃s�y�
dy

= − 2g̃s
2 − g̃cg̃cs − g̃cs

2 , �11c�

dg̃cs�y�
dy

= − 2g̃cs + 2g̃
g̃cs − 4g̃sg̃cs − 2g̃cg̃s − 2g̃cg̃
s − 4g̃csg̃
s,

�11d�

dg̃
s�y�
dy

= − 2g̃
s + 2g̃
g̃s − 4g̃cg̃cs − 4g̃cs
2 − 4g̃sg̃
s,

�11e�

with initial values g̃x�y=0�=gx /4�t. From these equations, it
follows that there is only a single line of weak-coupling fixed
points, namely, ḡc= ḡs= ḡcs= ḡ
s=0. In order to show this, we
note that we have started our analysis assuming that there is
neither a charge gap nor a spin gap. This implies that a weak-
coupling fixed point corresponds to ḡc= ḡs=0. Equations
�11a�–�11e� immediately imply that ḡcs= ḡ
s=0 also, and that
only ḡ
 remains undetermined.

A linear stability analysis of the fixed-point line shows
that it is stable against small perturbations gcs and g
s, that it
is marginally stable against small perturbations gs and g
,
and that its stability with respect to perturbations gc depends
on the sign of the fixed-point value ḡ
 �stable for ḡ
�0,
unstable for ḡ

0�. Therefore, in order to determine the
weak-coupling regime, it is convenient and sufficient to con-
sider the RG equations without the spin-charge coupling
terms, i.e., we may consider the RG equations for g̃cs= g̃
s
=0. We thus arrive at

dg̃
�y�
dy

= 2g̃c
2, �12a�

dg̃c�y�
dy

= 2g̃
g̃c, �12b�

dg̃s�y�
dy

= − 2g̃s
2, �12c�

in the vicinity of the weak-coupling fixed-point line.
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This simpler problem is readily analyzed. The trajectory
for the spin coupling g̃s�y� flows to infinity if gs�0. In this
case, a gap opens in the spin spectrum. If gs
0, this cou-
pling is marginally irrelevant, i.e., the spin mode remains
soft. In the charge sector, g
=gc initially, and this relation
remains valid under the RG flow. Therefore, it is sufficient to
consider Eq. �12a�. It is seen that for gc
0 the charge mode
becomes gapped because g̃c�y� flows to infinity, otherwise
the charge excitations remain gapless.

The simplified equations show that a fully gapless
Luttinger-liquid phase ḡc= ḡs=0 is not possible for our
model. The initial couplings would have to fulfill gc�0 and
gs
0 which requires J2
2U /3+J1 for gc�0 and J2
� �2U−J1� /3 for gs
0. These two conditions cannot be ful-
filled simultaneously with positive bare couplings U, J1, and
J2. Consequently, we must redo our RG analysis under the
assumption that at least one of the two modes is gapped.

D. Renormalization-group analysis for gapped charge
and/or spin modes

When one of the fields is gapped, the spin-charge cou-
pling processes become relevant.19,20 Their contribution will
be considered on the mean-field level. In this picture, the
gapped field is locked to a value which optimizes the inter-
action energy. Note that all bosonization treatments of a sys-
tem with nonlocal interactions and a gap in either the spin or
the charge sector are flawed when they neglect the renormal-
izations of the g-ology parameters which are generated by
the locking of the spin and/or charge fields.14–17

When there is a gap in the charge sector, the charge field
	c is locked at 	̄c=0 mod � because the initial value of the
coupling gc is positive. Neglecting the fluctuations of the
field 	c in Hamiltonian �9�, the terms proportional to g
s and
g
� do not contribute, and cos�2	c� can be replaced by its
weak-coupling mean-field value cos�2	c�=1. Due to this
substitution, the interaction terms proportional to gcs and gc�

become marginal because their scaling dimensions reduce to
x̄cs= x̄c�=2. On the mean-field level, the spin-coupling term
proportional to gcs is of the same form as the interaction term
proportional to gs in H�0�. Therefore, the spin field 	s fluctu-
ates in the modified potential gs

� cos�2	s� with the new cou-
pling gs

�,

gs
� = gs − gcs = U − 2J2. �13�

Analogously, the interaction term proportional to gc� in H�1�

combines with the interaction term proportional to g� in H�0�

to produce the new coupling g�
� , with

g�
� = g� − gc� = U − 2J2. �14�

This equation shows that the SU�2� spin symmetry is pre-
served on the mean-field level.

In the presence of a charge gap and the SU�2� spin sym-
metry, we only have to analyze a single equation for g̃s in-
stead of the five RG Eqs. �11a�–�11e�, namely,

dg̃s�y�
dy

= − 2g̃s
2, �15�

with the initial value g̃s�y=0�=gs
� /4�t. It is readily seen that

the spin mode becomes gapped if gs
��0, i.e., J2
U /2, in-

dependently of the value of the nearest-neighbor interaction
J1.

When there is a gap in the spin sector, the spin field 	s is
locked at 	̄s=0 mod � because the initial value of the cou-
pling gs is negative. Neglecting the fluctuations of the field
	s in the Hamiltonian �9�, the terms proportional to g
� and
gc� do not contribute and cos�2	s� can be substituted by its
weak-coupling mean-field value cos�2	s�=1. Due to this
substitution, the interaction terms proportional to gcs and g
s
become marginal because their scaling dimensions reduce to
x̄cs= x̄
s=2. On the mean-field level, the charge-coupling
term proportional to gcs is of the same form as the interaction
term proportional to gc in H�0�. Therefore, the charge field 	c
fluctuates in the modified potential gc

� cos�2	c� with the new
coupling gc

�,

gc
� = gc + gcs = U + J1 − J2. �16�

Using similar reasoning, the new coupling g

� becomes

g

� = g
 − g
s = U + 2J1 − 2J2. �17�

Note that these new initial couplings are not equal, so we
must analyze the two-dimensional scaling curves defined by
the equations

dg̃
�y�
dy

= 2g̃c
2, �18a�

dg̃c�y�
dy

= 2g̃
g̃c, �18b�

given the initial values g̃c�y=0�=gc
� /4�t and g̃
�y=0�

=g

� /4�t. The flow diagram is shown in Fig. 1.
The conditions for a gapped charge mode are either g


�


0 or g

��0 and �gc

��
 �g

��. This leads to the result that a

gapped charge mode exists if J2�2U /3+J1.

E. Phase diagram

In general, we find three regions where either the charge
gap or the spin gap or both are finite. It is interesting to

gc
~

~gρ

FIG. 1. Scaling curves for the charge-coupling parameters g̃c

and g̃
 in the presence of a spin gap.
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analyze the dominant correlations in the various gapped
phases. The order parameters for density waves in the charge
�CDW�, spin �SDW�, bond-charge �BCDW�, and bond-spin
�BSDW� require the calculation of correlation functions us-
ing the operators

Oi,CDW = �− 1�i�ni,↑ + ni,↓� , �19a�

Oi,SDW = �− 1�i�ni,↑ − ni,↓� , �19b�

Oi,BCDW = �− 1�i�ci,↑
† ci+1,↑ + ci,↓

† ci+1,↓ + H.c.� , �19c�

Oi,BSDW = �− 1�i�ci,↑
† ci+1,↑ − ci,↓

† ci+1,↓ + H.c.� , �19d�

written in terms of the lattice fermions. These order param-
eters become

OCDW�x� � sin 	c�x�cos 	s�x� , �20a�

OSDW�x� � cos 	c�x�sin 	s�x� , �20b�

OBCDW�x� � cos 	c�x�cos 	s�x� , �20c�

OBSDW�x� � sin 	c�x�sin 	s�x� , �20d�

in bosonized form. When the charge mode is gapped, the
field 	c is locked at 	̄c=0 mod �. When the spin mode is
gapped, the field 	s is locked at 	̄s=0 mod �. Therefore, in
the regime where both of the fields are gapped, we find that
the BCDW order parameter is maximal. Therefore, the
model describes a phase with bond ordering �BOW� for �c
�0 and �s�0.

When only the charge mode is gapped, the spin field is a
free field. However, upon increasing the scaling parameter
�y� of the renormalization-group procedure, the initially
negative spin coupling grows and tends to zero, and the spin
field oscillates around � /2 �mod ��. Therefore, for small
couplings, the dominating ordering is SDW for �c�0 and
�s=0. Note that the SU�2� spin symmetry is not spontane-
ously broken, i.e., the spin correlations are critical without
true long-range order.

Similarly, when the spin mode is gapped and the charge
mode is gapless, there is no true long-range charge order.
Therefore, we call this phase the Luther-Emery �LE� phase.
The charge coupling gc tends to zero either from positive
values or from negative values. Depending on the sign of the
charge coupling, 	c fluctuates around � /2 or around zero.
Correspondingly, the dominating correlations are either
CDW or BCDW for �c=0 and �s�0. The line which sepa-
rates the dominant BCDW critical correlation and the domi-
nant CDW correlations in the LE phase is indicated in Fig. 2
by a dashed line.

The resulting phase diagram of the t-U-J1-J2 model at
weak coupling is shown in Fig. 2. For U=0, the spin gap is
always finite for J2
0. For J2�J1, the charge gap is also
finite, and the ground state is characterized by a bond-order
wave. The charge gap closes at J2=J1 and the system goes
into a LE phase with no long-range ordering but critical
charge-density-wave correlations.

For U
0, J1
0, and J2�U /2, the ground state is analo-
gous to the spin-density-wave phase of the one-dimensional
Hubbard model, i.e., the charge gap is finite, the spin gap is
zero, and the spin correlations are critical. For 2U /3+J1

J2
U /2, both the spin gap and the charge gap are finite.
The ground state is a BOW with long-range order in the
bond-charge-density-wave correlations. For J2
2U /3+J1,
the charge gap closes and the system goes over to the LE
phase with a finite spin gap but no charge long-range order.
For 2U /3+J1�J2�U+J1, the bond-charge-density-wave
fluctuations dominate, whereas, for J2
U+J1, the fluctua-
tions in the charge-density-wave order parameter are maxi-
mal.

In order to make contact with earlier work, we display the
phase diagram of the t-U-J1 model separately in Fig. 3. In
contrast to previous results,14–16 we do not find any signature
of a BOW phase. For all J1
0, the ground state is SDW, just
as is the ground state of the half-filled Hubbard model for
U
0. This result is corroborated by our numerical DMRG
data which we present in Sec. III.

∆ = 0s

∆ = 0c ∆ = 0s

2J

2J

J1

J1

2J J1= U+

2J J1

2J J1

∆ = 0c

∆ = 0c
∆ = 0s /

∆ = 0s /

∆ = 0c

∆ = 0c
∆ = 0s /

U/2

U=0

U>0

U

=

= 2U/3+

/

/

/

/

SDW

LE

BOW

LE
BOW

FIG. 2. Field-theory prediction for the half-filled t-U-J1-J2

model. The solid lines give the phase boundaries between the fully
gapped regime �bond-order wave, BOW� and the semigapped re-
gimes �spin-density wave, SDW; Luther-Emery, LE�. The dashed
line shows the border between dominantly charge-density-wave and
bond-order-wave correlations in the Luther-Emery phase.

J1

∆ = 0c /

∆ = 0s

U
SDW

FIG. 3. Field-theory prediction for the half-filled t-U-J1 model.
For all J1
0, the ground state is a spin-density-wave phase with a
finite charge gap, zero-spin gap, and critical spin correlations.
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III. NUMERICAL RESULTS

In order to explore the phase diagram of the Hamil-
tonian �1� and to test the predictions of bosonization, we
carry out extensive, high-precision, ground-state DMRG
calculations.21–23 Relatively high sensitivity is required to re-
solve the phases especially in the weak-coupling regimes in
which one would expect bosonization to be valid. In order to
differentiate the possible phases, we calculate the spin gap
�s, the charge gap �c, and the bond-order-wave parameter
�B� of the one-dimensional t-U-J1-J2 model on lattices with
open boundary conditions and up to L=256 sites. The weight
of the discarded density-matrix eigenstates is held below a
maximum of 10−9.

For finite systems, the spin gap �s�L� is defined as

�s�L� = E0�L,L,S = 1� − E0�L,L,S = 0� . �21�

Accordingly, the charge gap �c�L� is determined using

�c�L� = �E0�L,L + 2,S = 1� + E0�L,L − 2,S = 0�

− 2E0�L,L,S = 0�	/2, �22�

where E0�L ,N ,S� is the ground-state energy for an L-site
system with N electrons and total spin S. We extrapolate
using second-order polynomials in 1 /L to determine the spin
gap �s and the charge gap �c in the thermodynamic limit,

�s�L� = �s
� + As/L + Bs/L2,

�c�L� = �c
� + Ac/L + Bc/L2, �23�

where �c,s
� , Ac,s, and Bc,s are fitting parameters. The staggered

bond-order parameter is defined as

�B��L� =
1

2�L − 1��i=1

L

�
�

�− 1�i+1�ci�
† ci+1,� + H.c.� . �24�

Note that this order parameter would be identically zero for a
finite translationally invariant system, e.g., one with periodic
boundary conditions, but is nonvanishing for the open
boundary conditions used here, which favor one of the two
possible dimerization patterns. In order to determine if the
phase is bond ordered in the thermodynamic limit, a finite-
size extrapolation must be carried out. We extrapolate the
bond-order parameter �B� using finite-size corrections of the
form 1 /L� without considering higher corrections

�B��L� = �B�� + AB/L�, �25�

where �B��, AB, and � are fitting parameters. The fitting pa-
rameter � is related to the form of the decay of the local
bond-order parameter �Bi�= �ci�

† ci+1,�+H.c.� away from the
boundaries; for critical decay this is governed by the relevant
boundary critical exponent.24 We find that adding higher-
order terms, which increases the number of fit parameters,
tends to make the fits less stable.

In the following, we first treat the t-U-J1 model, i.e., J2
=0 in Hamiltonian �1�, then study finite positive J2, first with
U=0 then with nonzero U. For simplicity, in the remainder
of this article the energy scale is set by taking t=1, and so U,
J1, and J2 are dimensionless quantities.

A. Results for J2=0

For the unfrustrated case �J2=0�, our bosonization proce-
dure of Sec. II predicts a SDW phase with a finite charge gap
and critical gapless spin excitations �c
0 and �s=0. In the
SDW phase, the bond-order parameter vanishes.

The finite-size extrapolation of the spin gap, plotted as a
function of 1 /L for U=0 and U=0.1, is shown in Fig. 4. As
can be clearly seen, the scaling behavior is predominantly
linear in 1 /L, and the 1 /L→0 extrapolated value �s

� is zero
on the scale of the plot for all values of J1 for both values of
U. A fit of the data with a second-order polynomial in 1 /L, as
discussed above, yields a value of �s

� that is less than 2
�10−4 in all cases. This puts a rather stringent constraint on
bond ordering in this case; the spin excitations are gapless to
a very high numerical accuracy.

The system-size behavior of the charge gap is displayed in
Fig. 5. As can be seen, the 1 /L→0 extrapolated value �c

� is
nonzero in general, with the scaling going from being pre-
dominantly linear in 1 /L �with a small negative �1 /L�2 term	
when �c

� is small, to having a substantial positive �1 /L�2

term when �c
� is significantly different from zero. Such

finite-size behavior is typical for gaps in one-dimensional
systems with open boundary conditions.
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FIG. 4. �Color online� Finite-size extrapolation of the spin gap
as a function of 1 /L for the t-U-J1 model at �a� U=0 and �b� U
=0.1.
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The behavior of the extrapolated gaps as a function of J1
is shown in Fig. 6. As discussed above, the spin gap is nu-
merically indistinguishable from zero for all values of J1 for
both U=0 and U=0.1. The extrapolated charge gap is small
on the scale of the plot for J1�0.8, and then increases, cross-
ing over to a linear increase for larger values of J1. From
bosonization, we would expect an exponential opening of the
gap with J1, similar to the exponential opening of the charge
gap with U in the J1=0 case.25 The J1 dependence of �c

� in
Fig. 6 is qualitatively consistent with such a behavior. We
have not carried out an explicit fit because the detailed form
of the exponential opening is not known from bosonization;
to determine the specifics of a general exponential form via
fitting to finite-size extrapolated data is difficult.

We now turn to the BOW order parameter, displayed as a
function of J1 for various system sizes and L=� in Fig. 7. At
each system size, �B��L� has an appreciable positive finite
value which varies significantly as a function of J1. The L
→� extrapolated value �B�� is small, but still shows some
variation with J1. Note, however, that the extrapolated value
is negative at small and large J1 and is positive only for
intermediate J1. Taking the largest negative value ��B���
−0.003� as a rough estimate of the extrapolation error, the

largest positive value �B���0.007 is not distinguishable
from zero to within our accuracy. Moreover the fit to Eq.
�25� yields an exponent � which varies between 0.47 and
0.77. All these underline the uncertainty in carrying out ex-
trapolations using this analytic form and the sensitivity of
�B�� to the details of the fit. On the other hand, as discussed
above, �s

� vanishes to a high accuracy for all J1, precluding
a BOW phase. Thus, within the numerical methods applied
here, the spin gap seems to be a significantly more sensitive
probe for the existence of a bond-order-wave phase than the
bond-order parameter �B� itself.

Our DMRG calculations for J2=0 are thus in agreement
with the predictions of the bosonization calculations of Sec.
II; see Fig. 3: the ground-state phase is a SDW with gapless
spin excitations for all positive U and J1. While we have
treated explicitly only two values of the interaction strength
U=0 and U=0.1, we have chosen these values in accordance
with the phase diagrams of Refs. 15 and 16 which predict the
appearance of a bond-order-wave phase only for U�0.35. At
larger values of U, the behavior should be that of the ordi-
nary half-filled Hubbard chain and one would not expect a
BOW phase to occur.

B. Results for U=0 and nonzero J2

We now include the explicit frustration J2 while setting
the on-site Coulomb interaction to zero.

Figure 8 shows the system-size extrapolated spin and
charge gaps �s

� and �c
� as functions of J2 at U=0 and J1

=1. �We do not show the finite-size extrapolation, which
proceeds similarly to that in Figs. 4 and 5, explicitly.� The
spin gap opens slowly at small J2, but with a form consistent
with a critical J2

s =0 �see the inset in particular�. The charge
gap decreases rapidly with J2 at small J2, reaching zero at
J2

c�1��1=J1, but then opens again at J2
c�2��2. At weak cou-

pling, this behavior of both gaps is consistent with the pre-
dictions of bosonization, but the reopening of the charge gap
for larger J2 is not contained in the bosonization analysis.
However, such large values of J2 are clearly outside its re-
gion of validity.
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FIG. 5. �Color online� Finite-size extrapolation of the charge
gap as a function of 1 /L for the t-U-J1 model at U=0.
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=32,64,96,128,256,512 and extrapolated bond-order parameter
�B�� as a function of J1 for the t-U-J1 model at U=0.
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Representative results for the finite-size scaling of the
bond-order parameter �B� are present in Fig. 9. For small J2,
the scaling behavior is similar to that for J2=0, yielding an
exponent � that varies between 0.44 and 0.71. However, for
large J2, the data extrapolate almost linearly to finite values.
This illustrates that the scaling form Eq. �25� goes over to a
function that might be better fit by a polynomial in 1 /L, as in
Eq. �23�. However, for consistency, we nevertheless always
use Eq. �25� for the fitting and note that the case of a linear
function of 1 /L is encompassed by Eq. �25� with �=1.

The extrapolated results for �B��, plotted as a function of
J2, are shown in Fig. 10. For J2=0 to J2

c�1�, �B�� is very
small, even falling off from the small finite value at J2=0,
which we have argued to come about due to numerical and
extrapolation errors. Note that here, for J2�J2

c�1��1, the
phase is characterized as bond-order wave within bosoniza-
tion. While this seems to be a contradiction at first glance,
note that the charge gap, Fig. 8, falls off very rapidly from its
small finite value at J2=0, whereas the spin gap opens very
slowly due to its putative exponential form. In consequence,

the value of �B�� is very small. Our interpretation, then is
that the BOW order parameter is finite, but numerically un-
resolvable in this region. For J2

c�1��J2�J2
c�2�, the spin gap is

clearly nonvanishing, but �B�� is numerically zero. This be-
havior is consistent with the bosonization prediction of a
Luther-Emery phase. In other words, the vanishing charge
gap indicates a phase in which there is no BOW. When J2

J2

c�2�, coincident with the reopening of the charge gap in
Fig. 8, the BOW phase reappears, this time clearly marked
by a finite bond-order parameter as well as finite spin and
charge gaps.

C. Results for nonzero U and J2

We now study the effect of the frustration J2 when the
Coulomb repulsion U is finite. Bosonization predicts that the
SDW phase that is present only along the J2=0 line at U
=0 becomes enlarged to a finite region at finite U. We ex-
plore the behavior as a function of J2 for moderate values of
U and J1, U=2 and J1=1.

Figure 11 shows the spin and charge gaps, extrapolated to
infinite system size, a functions of J2. As can be seen, the
spin gap opens at a finite J2

s �0.6 and the charge gap, al-
though at first decreasing and reaching a minimum at J2
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FIG. 8. �Color online� Extrapolated spin gap and charge gap as
functions of J2 for U=0, J1=1. The inset displays the same data for
J2�2.5 on an enlarged scale.
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�1.1, is always finite. As can be seen in Fig. 12, the bond-
order parameter �B��=0 when J2�J2

s and opens rapidly to a
large, finite value at J2�0.5. The behavior of all quantities is
consistent with a SDW phase for small J2 and a BOW for
large J2. Bosonization does predict a transition from a SDW
phase to a BOW phase at J2=U /2 �see Fig. 2�. However, it
also predicts a transition to a spin-gapless LE phase at larger
J2, which is not found in the numerical calculations. In our
opinion, this is because the values of U, J1, and J2 here are
large enough so that the regime of validity of bosonization is
exceeded. Note that the critical value J2

s �0.5 is far from the
weak-coupling prediction of J2=U /2=2, but agrees fairly
well with the value expected from the frustrated Heisenberg
chain, for which �J2

Heis /J1
Heis�c�0.241,26,27 if we take J1

Heis

=J1+4t2 /U=3, the effective Heisenberg coupling within
strong coupling; this yields an estimate J2

c�strong��0.72, in
reasonable agreement with the DMRG result.

Figure 13 summarizes the phase diagrams as a function of
J2 obtained from the DMRG calculations at zero and finite
U. For U=0, the SDW phase at J2=0 becomes a BOW phase
at arbitrarily small but weak J2. At intermediate J2, a metal-
lic, but spin-gapped Luther-Emery phase occurs, and at large

J2 the system re-enters the BOW phase. At moderate, finite
U, the SDW phase persists when J2 is small and finite, going
over to a BOW at larger J2.

IV. DISCUSSION AND CONCLUSION

In this work, we have investigated the ground-state be-
havior of the one-dimensional Hubbard model at half band
filling with antiferromagnetic nearest-neighbor and next-
nearest-neighbor Heisenberg interactions. Our field-
theoretical analysis for weak couplings indicates that the
ground state has a finite gap for either charge excitations
�spin-density-wave phase� or spin excitations �Luther-Emery
phase� or both �bond-order-wave phase�. Our extensive nu-
merical DMRG investigations agree very well with the field-
theoretical predictions for small interactions. The only ex-
ception is the lack of numerical evidence for a finite bond-
order parameter in the region U=0, J1=1, and 0�J2�J1.
Here the system sizes are large enough to resolve finite spin
and charge gaps but they are still too small to detect the very
small bond-order parameter.

For larger interactions, e.g., U=2, the DMRG finds a
strong-coupling bond-order-wave phase which eludes the
field-theoretical description. Instead, its existence and its
properties can be inferred from a strong-coupling expansion
of the model where it is seen that the strong-coupling BOW
phase results from the frustration of the nearest-neighbor and
next-nearest-neighbor Heisenberg couplings. Therefore, the
metallic Luther-Emery phase is limited to a narrow weak-
coupling region in the phase space where it would be very
difficult to justify the strengths of the coupling parameters
from microscopic considerations. For moderate interactions,
an echo of the weak-coupling Luther-Emery phase can be
seen in the behavior of the charge gap as a function of J2,
which displays a minimum at some J2�J1.

The nearest-neighbor Heisenberg coupling J1 is not a
frustrating interaction for the half-filled Hubbard model be-
cause the ground state of the t-U-J1 model is a spin-density
wave for all J1�0. In order to arrive at this conclusion in the
field-theoretical analysis, the fact that bosonic phase fields
are locked to their mean-field values when excitations are
gapped so that seemingly irrelevant operators become mar-
ginal operators, must be taken into account. In numerical
calculations one needs to study rather large system sizes in
order to extrapolate to a vanishing spin gap and bond-order
parameter in the thermodynamic limit. The next-nearest-
neighbor Heisenberg interaction J2, in contrast, truly frus-
trates the Hubbard model, opening the way to Luther-Emery
and bond-charge-ordered phases for J2
0. As expected from
our experience with the frustrated Heisenberg model, the
SDW phase is stable against weak frustration for U
0, i.e.,
a finite J2 is required to open the spin gap.

In conclusion, our study demonstrates both analytically
and numerically that a nearest-neighbor Heisenberg ex-
change interaction added to the half-filled Hubbard model
does not lead to frustration or to new phases in the ground-
state phase diagram, whereas a frustrating next-nearest-
neighbor exchange does.
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FIG. 12. �Color online� The L=� extrapolated �B� as a function
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